4755

4755 (FP1) Further Concepts for Advanced Mathematics

Section A			
1(i)	$\mathbf{M}^{-1} = \frac{1}{11} \begin{pmatrix} 2 & 1 \\ -3 & 4 \end{pmatrix}$	M1 A1 [2]	Dividing by determinant
1(ii)	$\frac{1}{11} \begin{pmatrix} 2 & 1 \\ -3 & 4 \end{pmatrix} \begin{pmatrix} 49 \\ 100 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{11} \begin{pmatrix} 198 \\ 253 \end{pmatrix}$ $\Rightarrow x = 18, y = 23$	M1 A1(ft) A1(ft) [3]	Pre-multiplying by their inverse
2	$z^3 + z^2 - 7z - 15 = (z - 3)(z^2 + 4z + 5)$	B1 M1	Show z = 3 is a root; may be implied
	, ,	A1 M1	Attempt to find quadratic factor Correct quadratic factor
	$z^2 + 4z + 5 = 0 \Rightarrow z = \frac{-4 \pm \sqrt{16 - 20}}{2}$	A1	Use of quadratic formula or other valid method
	\Rightarrow z = -2 + j and z = -2 - j		Both solutions
		[5]	
3(i)	3	B1 B1 [2]	Asymptote at <i>x</i> = -4 Both branches correct
	$\frac{2}{x+4} = x+3 \Longrightarrow x^2 + 7x + 10 = 0$	M1	Attempt to find where graphs cross or valid attempt at solution using inequalities
3(ii)	$\Rightarrow x = -2 \text{ or } x = -5$	A1	Correct intersections (both), or -2 and -5 identified as critical values
	$x \ge -2 \text{ or } -4 > x \ge -5$	A1 A2 [5]	$x \ge -2$ $-4 > x \ge -5$ s.c. A1 for $-4 \ge x \ge -5$ or $-4 > x > -5$

4755 Mark Scheme June 2009

4	$2w - 6w + 3w = \frac{-1}{2}$ $\Rightarrow w = \frac{1}{2}$	M1 A1	Use of sum of roots – can be implied
	$\Rightarrow \text{ roots are } 1, -3, \frac{3}{2}$ $\frac{-q}{2} = \alpha\beta\gamma = \frac{-9}{2} \Rightarrow q = 9$ $\frac{p}{2} = \alpha\beta + \alpha\gamma + \beta\gamma = -6 \Rightarrow p = -12$	A1 M1 A2(ft) [6]	Correct roots seen Attempt to use relationships between roots s.c. M1 for other valid method One mark each for $p = -12$ and $q = 9$

		1	
5(i)	$\frac{1}{5r-2} - \frac{1}{5r+3} = \frac{5r+3-5r+2}{(5r+3)(5r-2)}$	M1	Attempt to form common denominator
	$\equiv \frac{5}{(5r+3)(5r-2)}$	A1 [2]	Correct cancelling
5(ii)	$\sum_{r=1}^{30} \frac{1}{(5r-2)(5r+3)} = \frac{1}{5} \sum_{r=1}^{30} \left[\frac{1}{(5r-2)} - \frac{1}{(5r+3)} \right]$		
	$\left[\left(\frac{1}{2} - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{2} \right) + \right]$	В1	First two terms in full
	$= \frac{1}{5} \begin{bmatrix} \left(\frac{1}{3} - \frac{1}{8}\right) + \left(\frac{1}{8} - \frac{1}{13}\right) + \left(\frac{1}{13} - \frac{1}{18}\right) + \dots \\ + \left(\frac{1}{5n - 7} - \frac{1}{5n - 2}\right) + \left(\frac{1}{5n - 2} - \frac{1}{5n + 3}\right) \end{bmatrix}$	B1	Last term in full
	$ \left[+ \left(\frac{1}{5n-7} - \frac{1}{5n-2} \right) + \left(\frac{1}{5n-2} - \frac{1}{5n+3} \right) \right] $	M1	Attempt to cancel terms
	$=\frac{1}{5}\left[\frac{1}{3} - \frac{1}{5n+3}\right] = \frac{n}{3(5n+3)}$	A1	
	([4]	
6	When $n = 1$, $\frac{1}{2}n(7n-1) = 3$, so true for $n =$	B1	
	1	E1	Assume true for $n = k$
	Assume true for $n = k$		
	$3+10+17++(7k-4) = \frac{1}{2}k(7k-1)$ $\Rightarrow 3+10+17++(7(k+1)-4)$	M1	Add (k+1)th term to both sides
	$= \frac{1}{2}k(7k-1) + (7(k+1)-4)$ $= \frac{1}{2}[k(7k-1) + (14(k+1)-8)]$	M1	Valid attempt to factorise
	$= \frac{1}{2} [7k^2 + 13k + 6]$ $= \frac{1}{2} (k+1)(7k+6)$	A1	c.a.o. with correct simplification
	$=\frac{1}{2}(k+1)(7(k+1)-1)$		
	But this is the given result with $k + 1$ replacing k . Therefore if it is true for k it is true for $k + 1$.	E1 E1	Dependent on previous E1 and immediately previous A1 Dependent on B1 and both previous
	Since it is true for $n = 1$, it is true for $n = 1$, 2, 3 and so true for all positive integers.	[7]	E marks
			Section A Total: 36

4755

Section	on B		
7(i)	$(0,10),(-2,0),\left(\frac{5}{3},0\right)$	B1 B1 B1 [3]	
7(ii)	$x = \frac{-1}{2}, \ x = 1, \ y = \frac{3}{2}$	B1 B1 B1 [3]	
7(iii)	Large positive $x, y \rightarrow \frac{3}{2}^+$ (e.g. consider $x = 100$)	M1 B1	Clear evidence of method required for full marks
	Large negative x, $y \rightarrow \frac{3}{2}^{-}$	В1	
	(e.g. consider $x = -100$)	[3]	
7(iv)	Curve 3 branches of correct shape Asymptotes correct and labelled Intercepts correct and labelled	B1 B1 B1	
		[3]	
	$y = \frac{3}{2}$ $5/3 \Rightarrow \infty$		
	$x = -\frac{1}{2}$		

4755 Mark Scheme June 2009

8 (i)	z - (4+2j) = 2	B1	Radius = 2
		B1	z - (4 + 2j) or $z - 4 - 2j$
		B1	All correct
8(ii)		[3]	
O(II)	$\arg(z-(4+2j))=0$	B1	Equation involving the argument
	g(- (· · -5))	5.4	of a complex variable
		B1 B1	Argument = 0 All correct
8(iii)		Б,	All correct
	_	[3]	
	$a = 4 - 2\cos\frac{\pi}{4} = 4 - \sqrt{2}$	M1	Valid attempt to use trigonometry
	$b = 2 + 2\sin\frac{\pi}{4} = 2 + \sqrt{2}$		involving $\frac{\pi}{4}$, or coordinate
	$P = 4 - \sqrt{2} + \left(2 + \sqrt{2}\right)j$	A2	geometry
	$1 = 4 = \sqrt{2} + (2 + \sqrt{2})$		1 mark for each of a and b
8(iv)		[3]	s.c. A1 only for <i>a</i> = 2.59, <i>b</i> = 3.41
	$\frac{3}{4}\pi > \arg(z - (4 + 2j)) > 0$	B1	
	and $ z - (4 + 2j) < 2$	В1	$\arg(z-(4+2j))>0$
	and $ z-(4+2j) < 2$		$arg(z-(4+2j))<\frac{3}{4}\pi$
		B1	7
			$\left z - (4 + 2j)\right < 2$
		[3]	Deduct one mark if only error is
			use of inclusive inequalities

4755

Total: 72

Section	on B (continued)		
9(i)	Matrix multiplication is associative	B1 [1]	
	$\mathbf{MN} = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	M1	Attempt to find MN or QM
	$\Rightarrow \mathbf{MN} = \begin{pmatrix} 0 & 3 \\ 2 & 0 \end{pmatrix}$	A 1	or $\mathbf{QM} = \begin{pmatrix} 0 & -2 \\ 3 & 0 \end{pmatrix}$
	$\mathbf{QMN} = \begin{pmatrix} -2 & 0 \\ 0 & 3 \end{pmatrix}$	A1(ft) [3]	
9(ii)	M is a stretch, factor 3 in the x direction, factor 2 in the y direction.	B1 B1	Stretch factor 3 in the <i>x</i> direction Stretch factor 2 in the <i>y</i> direction
	N is a reflection in the line $y = x$.	B1	
	Q is an anticlockwise rotation through 90°	В1	
	about the origin.	[4]	
9(iii)	$ \begin{pmatrix} -2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 2 \\ 2 & 0 & 2 \end{pmatrix} = \begin{pmatrix} -2 & -2 & -4 \\ 6 & 0 & 6 \end{pmatrix} $	M1 A1(ft)	Applying their QMN to points. Minus 1 each error to a minimum of 0.
	C' A' 6- 4- 2- 6-4-20 2 4 > x	B2 [4]	Correct, labelled image points, minus 1 each error to a minimum of 0. Give B4 for correct diagram with no workings.
			Section B Total: 36